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Model identification as a data assimilation problem With dense and perfect observations

Machine learning for the geosciences with dense and perfect observations

▶ A typical (supervised) machine learning problem: given observations yk of a system, derive a
surrogate model of that system from the loss function:

J (p) =
K∑

k=1

∥∥yk+1 − M(p,yk)
∥∥2
.

▶ The surrogate model to be learned M depends on a set of coefficients p (e.g., the weights
and biases of a neural network).

▶ This requires dense and perfect observations of the system.

▶ In the goesciences, observations are usually sparse and noisy : we need data assimilation!
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Model identification as a data assimilation problem With sparse and noisy observations

Machine learning for the geosciences with sparse and noisy observations

▶ A rigorous Bayesian formalism for this problem:1

J (p,x0:K) =
K∑

k=0

∥∥yk − Hk(xk)
∥∥2

R−1
k

+
K−1∑
k=0

∥∥xk+1 − M(p,xk)
∥∥2

Q−1
k

.

▶ This resembles a typical weak-constraint 4D-Var cost function!
▶ This DA standpoint is remarkable as it allows for noisy an partial observations on the

physical system.
▶ Machine learning limit

If the physical system is fully and directly observed, i.e. Hk ≡ I, and if the observation errors
tend to zero, i.e. Rk → 0, then the observation term in the cost function is completely
frozen and imposes that xk ≃ yk, so that, in this limit, J (p,x0:K) becomes

J (p) =
K∑

k=0

∥yk − M (p,yk−1) ∥2
Q−1

k

.

1[Bocquet et al. 2019; Bocquet et al. 2020; Brajard et al. 2020] in the wake of [Hsieh et al. 1998; Abarbanel et al. 2018]
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Model identification as a data assimilation problem With sparse and noisy observations

Machine learning for the geosciences with sparse and noisy observations

▶ We need to minimise this cost function on both states and parameters:2

J (p,x0:K) =
1
2

K∑
k=0

∥∥yk − Hk(xk)
∥∥2

R−1
k

+
1
2

K−1∑
k=0

∥∥xk+1 − M(p,xk)
∥∥2

Q−1
k

.

▶ DA is used to estimate the state and then ML is used to estimate the model:

(p?,x?
0:K)

y0:K

Initialisation

choose p0

DA step (4D-Var)

estimate xa
0:K

ML step (NN)

update p

p0 xa
0:K

p

▶ This DA standpoint is remarkable as it allows for noisy an partial observations on the
physical system.

▶ The problem can (almost) fully be solved from a Bayesian standpoint using the empirical
Expectation-Maximization algorithm with an ensemble smoother3. But it has a significant
numerical cost.

2[Bocquet et al. 2019; Bocquet et al. 2020; Brajard et al. 2020] in the wake of [Hsieh et al. 1998; Abarbanel et al. 2018]
3[Ghahramani et al. 1999; Nguyen et al. 2019; Bocquet et al. 2020]
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Model identification as a data assimilation problem Learning model error

Hybrid models

▶ Even though NWP models are not perfect, they are already quite good!
▶ Instead of building a surrogate model from scratch, we use the DA-ML framework to build a

hybrid surrogate model, with a physical part and a statistical part:4

Physical model

Statistical model

Hybrid model

▶ In practice, the statistical part is trained to learn the error of the physical model.
▶ In general, it is easier to train a correction model than a full model: we can use smaller NNs

and less training data.
▶ But prone to initialisation shocks.

4[Farchi et al. 2021b; Brajard et al. 2021].
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Model identification as a data assimilation problem Resolvent or tendency correction?

Model integration and surrogate model architecture

▶ The model is defined by a set of ODEs or PDEs which define the tendencies:

∂x
∂t

= ϕ(x). (1)

▶ A numerical scheme is used to integrate the tendencies from time t to t+ δt (e.g.,
Runge–Kutta):

x(t+ δt) = F
(

x(t)
)
. (2)

▶ Several integration steps are composed to define the resolvent from one analysis (or window)
to the next:

M : xk 7→ xk+1 = F ◦ · · · ◦ F(xk). (3)

Resolvent correction

▶ Physical model and of NN are
independent.

▶ NN must predict the analysis increments.
▶ Resulting hybrid model not suited for

short-term predictions.
▶ For DA, need to assume linear growth of

errors in time to rescale correction.

Tendency correction

▶ Physical model and NN are entangled .
▶ Need TL of physical model to train NN!
▶ Resulting hybrid model suited for any

prediction.
▶ Can be used as is for DA.
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Model identification as a data assimilation problem Numerical experiments

Experiment plan

▶The reference model, the surrogate model and the forecasting system

δtr

δta

δtf

∆t

t0 tK

t0 tK

T + TfT

y0 yK

generating physical states

training step

forecast step

yk yk+1

▶Metrics of comparison:
Model: ODE coefficients norm ∥pa − pr∥∞, when the reference parameters pr are known.
Forecast skill [FS]: Normalized RMSE (NRMSE) between the reference and the surrogate forecasts as a
function of the lead time (averaged over many initial conditions).
Lyapunov spectrum [LS].
Power spectrum density [PSD].
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Model identification as a data assimilation problem Numerical experiments

Almost identifiable model and perfect observations

▶ Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Lorenz 96 model (40 variables)

dxn

dt
= (xn+1 − xn−2)xn−1 − xn + F,

Surrogate model based on an RK2 scheme.
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Model identification as a data assimilation problem Numerical experiments

Almost identifiable model and imperfect observations

▶Very good reconstruction of the long-term properties of the model (L96 model).

▶ Approximate scheme
▶ Fully observed
▶ Significantly noisy observations R = I
▶ Long window K = 5000, ∆t = 0.05
▶ EnKS with L = 4
▶ 30 EM iterations
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Model identification as a data assimilation problem Numerical experiments

Not so identifiable model and perfect observations

▶ Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).

∂u

∂t
= −u

∂u

∂x
−
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∂4u
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Model identification as a data assimilation problem Numerical experiments

Not so identifiable model and perfect observations

▶ Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).

∂u

∂t
= −u

∂u

∂x
−

∂2u

∂x2 −
∂4u

∂x4 ,

1

x

∂ηx

∂2
ηx

∂3
ηx

∂4
ηx

x2

x∂ηx

x∂2
ηx

x∂3
ηx

x∂4
ηx

(∂ηx)2

(∂ηx)∂2
ηx

(∂ηx)∂3
ηx

(∂2
ηx)2

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

C
o
effi

ci
en

t

PDE equivalent of the surrogate model

PDE of the reference model

M. Bocquet Data Science Symposium No. 7 at Hereon, 27-28 June 2022, Geesthacht, Germany 12 / 21



Model identification as a data assimilation problem Numerical experiments

Two-scale Lorenz model (L05III)

▶The two-scale Lorenz model (L05III) model: 36 slow & 360 fast variables, with equations:

dxn

dt
= ψ+

n (x) + F − h
c

b

9∑
m=0

um+10n,

dum

dt
=
c

b
ψ−

m(bu) + h
c

b
xm/10, with ψ±

n (x) = xn∓1(xn±1 − xn∓2) − xn,
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Model identification as a data assimilation problem Numerical experiments

Non-identifiable model and imperfect observations

▶Good reconstruction of the long-term properties of the model (L05III model).

▶ Approximate scheme
▶ Observation of the coarse modes only
▶ Significantly noisy observations R = I
▶ Long window K = 5000, ∆t = 0.05
▶ EnKS with L = 4
▶ 30 EM iterations
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Model identification as a data assimilation problem Numerical experiments

Data assimilation with the surrogate model of L0III (order 1.5 of the loop)

▶ The non-corrected model is the one-scale Lorenz system.
▶ Noisy observations are assimilated using strong-constrained 4D-Var .
▶ Simple CNNs are trained using the 4D-Var analysis.
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▶ The tendencies corr. is more accurate than the resolvent corr., with smaller NNs and less training data.
▶ The tendencies corr. benefits from the interaction with the physical model.
▶ The resolvent corr. is highly penalised (in DA) by the assumption of linear growth of errors.
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Online model error correction
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Online model error correction Variational approach

Online model error correction

▶ So far, the model error has been learnt offline: the ML (or training) step first requires a long
analysis trajectory.

▶ We now investigate the possibility to perform online learning, i.e. improving the correction as
new observations become available.

▶ To do this, we use the formalism of DA to estimate both the state and the NN parameters:5

J (p,x) =
∥∥x − xb

∥∥2
B−1

x
+

∥∥p − pb
∥∥2

B−1
p

+
L∑

k=0

∥∥yk − Hk ◦ Mk(p,x)
∥∥2

R−1
k

.

▶ For simplicity, we have neglected potential cross-covariance between state and NN
parameters in the prior.

▶ Information is flowing from one window to the next using the prior for the state xb and for
the NN parameters pb.

▶ Already been investigated with an EnKF, with solutions.6

5[Farchi et al. 2021a]
6[Bocquet et al. 2021; Malartic et al. 2022]
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Online model error correction Variational approach

Numerical illustration with the same two-scale Lorenz system

▶ We use the tendency correction approach, with the same simple CNN as before, and still using 4D-Var.7
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▶ The online correction steadily improves the model.
▶ At some point, the online correction gets more accurate than the offline correction.
▶ Eventually, the improvement saturates. The analysis error is similar to that obtained with the true model!

7[Farchi et al. 2021a]
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Online model error correction Variational approach

Online learning: towards an operational implementation with OOPS

▶ Development of a fortran NN library to interact with the fortran implementation of the forecast model.
▶ Interfacing the NN library with OOPS to estimate the NN parameters with DA.
▶ Simplifications of the NN correction:

▶ the correction is additive, and added after each integration step (close to tendency correction);
▶ the correction is computed independently for each atmospheric column8.
▶ the correction is computed at the start of the DA window and not updated during the window;
▶ in practice, it requires only small adjustments to the current WC 4D-Var already implemented.

▶ Demonstration with OOPS-QG with promising results, implementation with OOPS-IFS in progress.
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8[Bonavita et al. 2020]
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Online model error correction Ensemble Kalman filtering approach

Online learning with a LEnKF: Augmented state vector

▶Parameters of the model:

p ∈ RNp [global parameters], q ∈ RNq [local parameters].

▶Augmented state formalism [Jazwinski 1970; Ruiz et al. 2013]:

z =
[

x p q
]⊤

∈ RNz , with Nz = Nx +Np +Nq.

▶Beware that nonlocal observations require covariance localisation!

▶ Just a more ambitious parameter estimation problem!?
Yes! But we have to fill in several critical gaps of the parameter-estimation-via-EnKF literature.

▶ Summary of the EnKF-ML family of algorithms we built:9
Inference problem Dom. Local. Cov. Local. Dom. + Cov. Local.

local obs. only numerically costly
State LETKF [Hunt et al. 2007] LEnSRF [Whitaker et al. 2002] L2EnSRF [Farchi et al. 2019]
State LETKF-ML [Bocquet et al. 2021] LEnSRF-ML [Bocquet et al. 2021] L2EnSRF-ML

+ global param. new algorithm new algorithm not discussed
State LETKF-HML LEnSRF-HML L2EnSRF-HML

+ global & local param. new algorithm new algorithm new algorithm

9new algorithms: [Bocquet et al. 2021; Malartic et al. 2022], see also [Ruckstuhl et al. 2018]
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Conclusions

Conclusions

▶Main messages:
Bayesian DA view on joint state and model estimation.
DA can address goals assigned to ML but with partial & noisy observations.
Successful on 1D and 2D low-order models (L96, L05III, L96i, mL96, OOPS QG).

▶ In progress: more ambitious models and datasets
Application to the Marshall-Molteni 3-layer QG model on the sphere
Application to the ERA5 and CMIP data (WeatherBench10-like)
Application to the ECMWF IFS
Application to sea-ice surrogate modelling: Schmidt Futures/VESRI/SASIP project

10[Rasp et al. 2020]
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