

Unlocking the Potential of ML for Earth and Environment Researchers

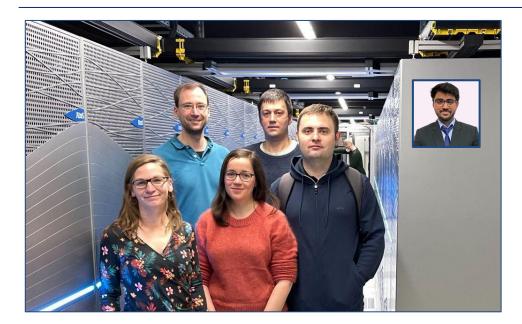
Frauke Albrecht, Caroline Arnold, Danu Caus, Harsh Grover, Andrey Vlasenko, Tobias Weigel *Al Consultants Earth & Environment @DKRZ*

Helmholtz Al

Artificial Intelligence Cooperation Unit

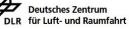
Mission Bring applied AI / ML techniques to your research questions and datasets

Each Unit


- Young Investigator Group
- Al Consultants

DKR7

AI Consultants for Earth & Environment


Vouchers from all Earth & Environment Helmholtz Centers

HELMHOLTZAI

HELMHOLTZ AI

Vouchers

Selected user questions

Consultation

"I already use ML for my research project, however most of my colleagues work with different techniques."

We act as a "sparring partner", give feedback and suggestions, research minor issues, ...

Performance

"I have running ML code but it does not scale well / does not run fast enough."

We support you with performance analysis and code review

Implementation

"I have data at hand and I know what I want to achieve, but I need help with my ML research project."

We implement code for ML training, data processing, ...

Your question?

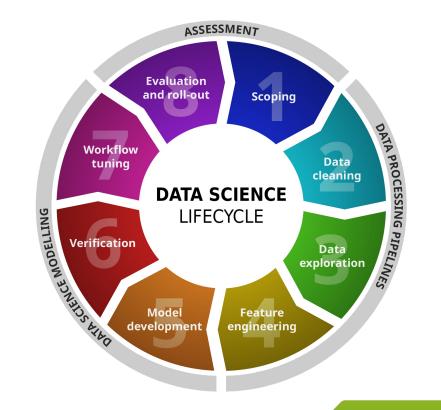
No voucher is like the other – contact us for help with your machine learning project!

Focus Areas for Support

ML for Earth System Modelling

Building ESM-ML hybrids

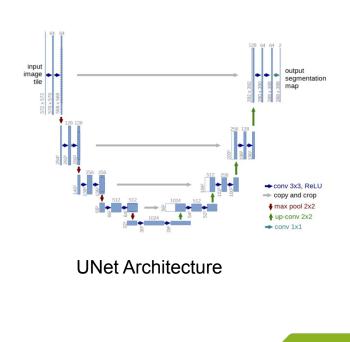
- Parametrizations for ICON
- Prototype ML models and integration with ESM code
- Interactive digital twins for extrapolation

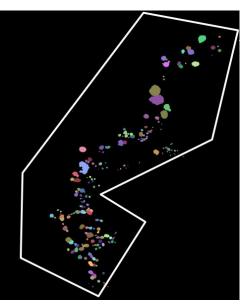


ML on Earth observation data

- Support for training, testing, tuning, deploying EO workflows with ML
- Time series, example: Seismology
- Image-like data (e.g. jpg-images or Satellite images), example: Dead Sea Lakebed Segmentation

Full Data Science Lifecycle

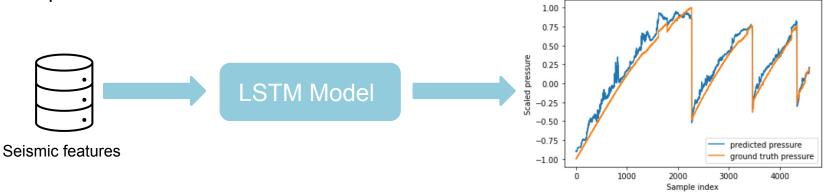

HELMHOLTZ AI


Dead Sea Lakebed Segmentation

Perform sinkhole **Instance Segmentation** using deep learning techniques

Sinkhole Instance Segmentation

HELMHOLTZ AI

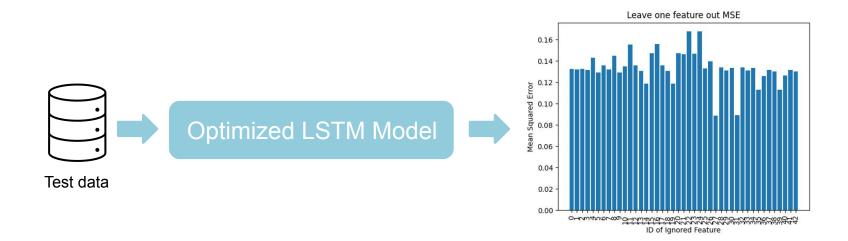

Seismology

Objective:

Importance of **scientifically established** seismological features through the eyes of a neural network

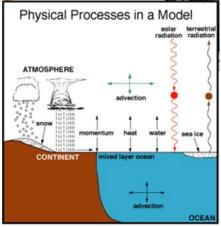
Phase 1:

Train optimal sequence model using a Long Short Term Memory neural network to predict pressure



Phase 2:

Using **test** data and the **optimized** model from phase 1 to compute the error when one feature is ignored

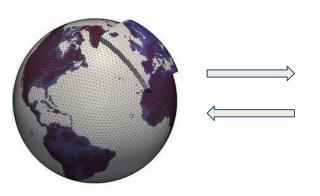


ML Emulators in Earth System Models (ESMs)

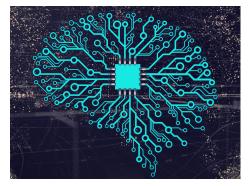
- ESM: few km grid resolution
- Processes on smaller scales, e.g.
 - convection
 - atmospheric chemistry
- Treatment in the ESM
 - parameterization
 - neglected due to computational effort

ICON: ICOsahedral Nonhydrostatic model

HELMHOLTZAI


Replace sub-grid scale process by ML prediction

- "Easy" to train offline with good accuracy
- Need to test online coupled to the ESM


Hybrid Models: Rapid Development

FORTRAN / CPU

Python / GPU or CPU

Voucher request

- Call Python ML inference inside Fortran ESM
- Should allow for iterative development not hard coded
- Should be performant to run experiments

What is required for a good Voucher Problem?

Contact us to jumpstart your AI project: <u>consultant-helmholtz.ai@dkrz.de</u> Tobias Weigel, <u>weigel@dkrz.de</u>

https://www.helmholtz.ai https://docs.dkrz.de/doc/software%26services/machine-learning/index.html

